New! Sign up for our free email newsletter.
Science News
from research organizations

Engineering plants for a changing climate

Special issue of PLOS Biology explores plant engineering as a tool to improve the climate resilience and carbon capture potential of crops

Date:
July 20, 2023
Source:
PLOS
Summary:
Climate change is affecting the types of plant varieties we can cultivate, as well as how and where we can do so. A new collection of articles in the open access journal PLOS Biology explores the twin challenges of engineering plants for resilience to climate change and enhancing their carbon-capture potential.
Share:
FULL STORY

Climate change is affecting the types of plant varieties we can cultivate, as well as how and where we can do so. A new collection of articles in the open access journal PLOS Biology explores the twin challenges of engineering plants for resilience to climate change and enhancing their carbon-capture potential. PLOS Biology Editors Pamela Ronald & Joanna Clarke provide a summary editorial, and details regarding the other papers may be found below.

To meet the agricultural challenges caused by climate change and a growing population, we need to improve crop production. A Perspective from industry leaders including Catherine Feuillet calls for more and better public-private partnerships to accelerate discoveries in crop research.

How can we sustainably feed our growing population as the climate changes? A Perspective from Megan Matthews argues that by engineering photosynthesis to increase carbon capture, we can mitigate climate change and increase food production.

As climate change affects weather patterns and soil health, agricultural productivity could decrease substantially. Synthetic biology can be used to enhance climate-resilience in plants and create the next generation of crops, if the public will accept it, according to an article from Jennifer Brophy.

The microbiome of cropland soils could be manipulated to accelerate soil carbon sequestration. A Perspective from Noah Fierer suggests how this could be achieved and outlines the general steps required to develop, implement, and validate such microbial-based strategies.

Of all crop species, rice has the most genetic potential for adaptation to climate change, and Genebank accessions have been critical in developing improved stress-tolerant rice varieties. A Community Page from Kenneth McNally highlights new tools and resources from the International Rice Research Institute for accelerating the identification and deployment of genes conferring climate-change resilience.

Our basic understanding of carbon cycling in the biosphere remains qualitative and incomplete, precluding our ability to effectively engineer novel solutions to climate change. How can we attempt to engineer the unknown? An Essay from Patrick Shih proposes that the main contributions of plant synthetic biology in addressing climate change will lie not in delivering desired genotypes but in enabling the predictive understanding necessary to design target genotypes in the first place.

Cultivated species have reduced genetic diversity relative to their closest wild relatives. Preserving the rich genetic resources that crop wild relatives offer while avoiding detrimental variants and maladaptive genetic contributions is a central challenge for ongoing crop improvement. An Essay from Jeffrey Ross-Ibarra supports the use of traditional varieties as an intermediate between wild relatives and modern cultivars to increase genetic diversity in crops.

As the climate changes, so too will the relationship between humans and the plants we use for food, medicine, shelter, fuel and clothing. What, how and where we cultivate plants will change, as will the potential biotic and abiotic stresses faced by cultivated plants. This collection of articles explores strategies to help plants adapt to a changing climate, including ancient and modern breeding techniques, genome engineering, synthetic biology and microbiome engineering.

The full Collection is available in PLOS Biology here: https://collections.plos.org/collection/engineering-plants-for-a-changing-climate/


Story Source:

Materials provided by PLOS. Note: Content may be edited for style and length.


Journal References:

  1. Joanna Clarke, Pamela C. Ronald. Engineering plants for a changing climate. PLOS Biology, 2023; 21 (7): e3002243 DOI: 10.1371/journal.pbio.3002243
  2. Catherine Feuillet, Kellye Eversole. An integrated, systems-wide approach is needed for public–private partnerships to drive genetic innovation in crops. PLOS Biology, 2023; 21 (7): e3002181 DOI: 10.1371/journal.pbio.3002181
  3. Megan L. Matthews. Engineering photosynthesis, nature’s carbon capture machine. PLOS Biology, 2023; 21 (7): e3002183 DOI: 10.1371/journal.pbio.3002183
  4. Bella N. Archibald, Vivian Zhong, Jennifer A. N. Brophy. Policy makers, genetic engineers, and an engaged public can work together to create climate-resilient plants. PLOS Biology, 2023; 21 (7): e3002208 DOI: 10.1371/journal.pbio.3002208
  5. Noah Fierer, Corinne M. Walsh. Can we manipulate the soil microbiome to promote carbon sequestration in croplands? PLOS Biology, 2023; 21 (7): e3002207 DOI: 10.1371/journal.pbio.3002207
  6. Kenneth L. McNally, Amelia Henry. Tools for using the International Rice Genebank to breed for climate-resilient varieties. PLOS Biology, 2023; 21 (7): e3002215 DOI: 10.1371/journal.pbio.3002215
  7. Simon Alamos, Patrick M. Shih. How to engineer the unknown: Advancing a quantitative and predictive understanding of plant and soil biology to address climate change. PLOS Biology, 2023; 21 (7): e3002190 DOI: 10.1371/journal.pbio.3002190
  8. Sherry Flint-Garcia, Mitchell J. Feldmann, Hannes Dempewolf, Peter L. Morrell, Jeffrey Ross-Ibarra. Diamonds in the not-so-rough: Wild relative diversity hidden in crop genomes. PLOS Biology, 2023; 21 (7): e3002235 DOI: 10.1371/journal.pbio.3002235

Cite This Page:

PLOS. "Engineering plants for a changing climate." ScienceDaily. ScienceDaily, 20 July 2023. <www.sciencedaily.com/releases/2023/07/230720124918.htm>.
PLOS. (2023, July 20). Engineering plants for a changing climate. ScienceDaily. Retrieved October 31, 2024 from www.sciencedaily.com/releases/2023/07/230720124918.htm
PLOS. "Engineering plants for a changing climate." ScienceDaily. www.sciencedaily.com/releases/2023/07/230720124918.htm (accessed October 31, 2024).

Explore More

from ScienceDaily

RELATED STORIES